Management dampens seasonal variability in soil microclimates and alters its chemical and physical properties in a semi-arid region

Author:

Kurylo Jessica S1ORCID,Le Jennifer T2,Mehring Andrew3,Ambrose Richard F1

Affiliation:

1. Department of Environmental Health Sciences, Fielding School of Public Health, University of California , Los Angeles, CA 90095-1772, USA

2. Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego , La Jolla, CA 92093, USA

3. Department of Biology, University of Louisville , Louisville, KY 40292, USA

Abstract

Abstract The urbanization process substantially alters every aspect of the soil environment. In this study, we compared soil microclimate, chemistry, and physical characteristics of unmanaged natural soils with managed soils of three common urban land uses (stormwater natural treatment systems, ornamentally landscaped areas, and lawns) across three University of California campuses. Over the course of 1-year, average monthly soil temperatures among land uses showed fewer than expected differences. Average monthly soil moisture reflected wet and dry seasonal changes, but this pattern was muted in managed land uses compared to natural soils due to irrigation. From April through December, lawns and landscaped areas were significantly wetter than natural soils (e.g. 1.5–3 times higher in August and September). Soil organic matter, total carbon, and total nitrogen were significantly higher in lawns compared to other land uses, while their bulk density was significantly lower. Principle component analysis confirmed that natural and lawn soil properties were distinct from each other. These differences in the managed soils, particularly lawns, are attributable to typical urban land management practices such as fertilization, irrigation, and the installation of organic-rich sod. As urbanization continues to change the native landscape of semi-arid regions, these changes to soil microclimate, chemistry, and physical characteristics are important to consider for urban best practices and sustainable development.

Funder

University of California Office of the President, Multicampus Research Programs and Initiatives

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3