Possible cold-adaptation for the fungal kinesin in compensation for thermal stability acquired by single amino acid substitution

Author:

Shimizu Youské1,Togawa Toru1,Chaen Shigeru1

Affiliation:

1. Department of Biosciences, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, Japan

Abstract

Abstract The amino acid sequence of the motor domain of AnKinA, kinesin-1 from Aspergillus nidulans, growing optimally at 37°C, was compared with that of SbKin1, kinesin-1 from the snow mold Sclerotinia borealis. For cold-adaptation, some enzymes are thought to exhibit augmented protein structure flexibility, acquired most effectively by substituting a glycine residue for another amino acid residue. By the comparison described above, two glycine residues proximal to tightly bound ADP were identified in the SbKin1 motor domain, of which the corresponding residues of AnKinA were non-glycine ones (P60 and S323). We made AnKinA recombinant kinesin (AnKinA-WT (WT)) along with P60G and S323G mutants. From the basal ATPase activity (without microtubules), these kinesins showed similar characteristics in activation energies, while deviation from the linearity of the ATPase activity time-course was detected at 34°C for WT and P60G but at 24°C for S323G. The microtubule translocation velocity of WT, P60G or S323G exhibited an activation energy of 60, 58 or 53 kJ/mol, respectively; for S323G, the activation energy was lower and the velocity at low temperatures was higher than those for the other two. These results suggest that the point mutation S323G would offer possible cold-adaptation in compensation for thermal stability.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3