Histidine 131 in presenilin 1 is the pH-sensitive residue that causes the increase in Aβ42 level in acidic pH

Author:

Cai Tetsuo1,Hatano Aki1,Kanatsu Kunihiko1,Tomita Taisuke1ORCID

Affiliation:

1. Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

AbstractAlzheimer disease (AD) is the most common neurodegenerative disease worldwide. The pathological hallmark of AD is the presence of senile plaques in the brain, which are accumulations of amyloid-β peptide (Aβ) ending at the 42nd residue (i.e. Aβ42), which is produced through multistep cleavage by γ-secretase. Thus, methods to regulate γ-secretase activity to attenuate the production of Aβ42 are in urgent demand towards the development of treatments for AD. We and others have demonstrated that γ-secretase activity is affected by its localization and ambient environment. In particular, an increase in Aβ42 production is correlated with the intracellular transport of γ-secretase and endosomal maturation-dependent luminal acidification. In this study, we focused on the mechanism by which γ-secretase affects Aβ42 production together with alterations in pH. Histidine is known to function as a pH sensor in many proteins, to regulate their activities through the protonation state of the imidazole side chain. Among the histidines facing the luminal side of presenilin (PS) 1, which is the catalytic subunit of γ-secretase, point mutations at H131 had no effect on the Aβ42 production ratio in an acidic environment. We also observed an increase in Aβ42 ratio when histidine was introduced into N137 of PS2, which is the corresponding residue of H131 in PS1. These results indicated that H131 serves as the pH sensor in PS1, which contains γ-secretase, to regulate Aβ42 production depending on the luminal pH. Our findings provide new insights into therapeutic strategies for AD targeting endosomes or the intracellular transport of γ-secretase.

Funder

Grants-in-Aid for Scientific Research

research fellowship for young scientists

Japan Society for the Promotion of Science

Mitsubishi Foundation

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3