Author:
Konnyu Kristin J,Grimshaw Jeremy M,Trikalinos Thomas A,Ivers Noah M,Moher David,Dahabreh Issa J
Abstract
Abstract
A goal of evidence synthesis for trials of complex interventions is to inform the design or implementation of novel versions of complex interventions by predicting expected outcomes with each intervention version. Conventional aggregate data meta-analyses of studies comparing complex interventions have limited ability to provide such information. We argue that evidence synthesis for trials of complex interventions should forgo aspirations of estimating causal effects and instead model the response surface of study results to 1) summarize the available evidence and 2) predict the average outcomes of future studies or in new settings. We illustrate this modeling approach using data from a systematic review of diabetes quality improvement (QI) interventions involving at least 1 of 12 QI strategy components. We specify a series of meta-regression models to assess the association of specific components with the posttreatment outcome mean and compare the results to conventional meta-analysis approaches. Compared with conventional approaches, modeling the response surface of study results can better reflect the associations between intervention components and study characteristics with the posttreatment outcome mean. Modeling study results using a response surface approach offers a useful and feasible goal for evidence synthesis of complex interventions that rely on aggregate data.
Funder
Canadian Institutes of Health Research
Frederick Banting and Charles Best Canada Graduate Scholarship
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献