Development and Validation of a Claims-Based Model to Predict Categories of Obesity

Author:

Suissa Karine,Wyss Richard,Lu Zhigang,Bessette Lily G,York Cassandra,Tsacogianis Theodore N,Lin Kueiyu Joshua

Abstract

Abstract We developed and validated a claims-based algorithm that classifies patients into obesity categories. Using Medicare (2007–2017) and Medicaid (2000–2014) claims data linked to 2 electronic health record (EHR) systems in Boston, Massachusetts, we identified a cohort of patients with an EHR-based body mass index (BMI) measurement (calculated as weight (kg)/height (m)2). We used regularized regression to select from 137 variables and built generalized linear models to classify patients with BMIs of ≥25, ≥30, and ≥40. We developed the prediction model using EHR system 1 (training set) and validated it in EHR system 2 (validation set). The cohort contained 123,432 patients in the Medicare population and 40,736 patients in the Medicaid population. The model comprised 97 variables in the Medicare set and 95 in the Medicaid set, including BMI-related diagnosis codes, cardiovascular and antidiabetic drugs, and obesity-related comorbidities. The areas under the receiver-operating-characteristic curve in the validation set were 0.72, 0.75, and 0.83 (Medicare) and 0.66, 0.66, and 0.70 (Medicaid) for BMIs of ≥25, ≥30, and ≥40, respectively. The positive predictive values were 81.5%, 80.6%, and 64.7% (Medicare) and 81.6%, 77.5%, and 62.5% (Medicaid), for BMIs of ≥25, ≥30, and ≥40, respectively. The proposed model can identify obesity categories in claims databases when BMI measurements are missing and can be used for confounding adjustment, defining subgroups, or probabilistic bias analysis.

Funder

National Institutes of Health/National Library of Medicine

Publisher

Oxford University Press (OUP)

Subject

Epidemiology

Reference37 articles.

1. Prevalence of obesity and severe obesity among adults: United States, 2017–2018;Hales,2020

2. Prevalence of obesity among older adults in the United States, 2007–2010;Fakhouri,2012

3. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis;Guh;BMC Public Health.,2009

4. Body weight considerations in the management of type 2 diabetes;Apovian;Adv Ther.,2019

5. Validation of obesity-related diagnosis codes in claims data;Suissa;Diabetes Obes Metab.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3