SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency

Author:

Takahashi Saki,Peluso Michael J,Hakim Jill,Turcios Keirstinne,Janson Owen,Routledge Isobel,Busch Michael P,Hoh Rebecca,Tai Viva,Kelly J Daniel,Martin Jeffrey N,Deeks Steven G,Henrich Timothy J,Greenhouse Bryan,Rodríguez-Barraquer Isabel

Abstract

Abstract Serosurveys are a key resource for measuring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) population exposure. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce estimates of cumulative incidence from raw seroprevalence survey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a postinfection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce estimates of cumulative incidence from 5 large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identified substantial differences between raw seroprevalence and cumulative incidence of over 2-fold in the results of some surveys, and we provide a tool for practitioners to generate cumulative incidence estimates with preset or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics.

Publisher

Oxford University Press (OUP)

Subject

Epidemiology

Reference66 articles.

1. SeroTracker: a global SARS-CoV-2 seroprevalence dashboard;Arora;Infect Dis.,2021

2. Serological evidence of human infection with SARS-CoV-2: a systematic review and meta-analysis;Chen;Global Health.,2021

3. Estimating prevalence from the results of a screening test;Rogan;Am J Epidemiol.,1978

4. Bayesian analysis of tests with unknown specificity and sensitivity;Gelman;Appl Stat.,2020

5. Jointly modeling prevalence, sensitivity and specificity for optimal sample allocation;Larremore;bioRxiv

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3