Short-term risk prediction after major lower limb amputation: PERCEIVE study

Author:

Gwilym Brenig L1,Pallmann Philip2,Waldron Cherry-Ann2,Thomas-Jones Emma2,Milosevic Sarah2,Brookes-Howell Lucy2,Harris Debbie2,Massey Ian3,Burton Jo3,Stewart Phillippa3,Samuel Katie4,Jones Sian5,Cox David5,Clothier Annie1,Edwards Adrian6,Twine Christopher P7,Bosanquet David C1,Ambler G,Benson R,Birmpili P,Blair R,Bosanquet D C,Dattani N,Dovell G,Forsythe R,Gwilym B L,Hitchman L,Machin M,Nandhra S,Onida S,Preece R,Saratzis A,Shalhoub J,Singh A,Forget P,Gannon M,Celnik A,Duguid M,Campbell A,Duncan K,Renwick B,Moore J,Maresch M,Tolba M,Kamal D,Kabis M,Hatem M,Juszczak M,Dattani N,Travers H,Shalan A,Elsabbagh M,Rocha-Neves J,Pereira-Neves A,Teixeira J,Lyons O,Lim E,Hamdulay K,Makar R,Zaki S,Francis C T,Azer A,Ghatwary-Tantawy T,Elsayed K,Mittapalli D,Melvin R,Barakat H,Taylor J,Veal S,Hamid H K S,Baili E,Kastrisios G,Maltezos C,Maltezos K,Anastasiadou C,Pachi A,Skotsimara A,Saratzis A,Vijaynagar B,Lau S,Velineni R,Bright E,Montague-Johnstone E,Stewart K,King W,Karkos C,Mitka M,Papadimitriou C,Smith G,Chan E,Shalhoub J,Machin M,Agbeko A E,Amoako J,Vijay A,Roditis K,Papaioannou V,Antoniou A,Tsiantoula P,Bessias N,Papas T,Dovell G,Goodchild F,Nandhra S,Rammell J,Dawkins C,Lapolla P,Sapienza P,Brachini G,Mingoli A,Hussey K,Meldrum A,Dearie L,Nair M,Duncan A,Webb B,Klimach S,Hardy T,Guest F,Hopkins L,Contractor U,Clothier A,McBride O,Hallatt M,Forsythe R,Pang D,Tan L E,Altaf N,Wong J,Thurston B,Ash O,Popplewell M,Grewal A,Jones S,Wardle B,Twine C,Ambler G,Condie N,Lam K,Heigberg-Gibbons F,Saha P,Hayes T,Patel S,Black S,Musajee M,Choudhry A,Hammond E,Costanza M,Shaw P,Feghali A,Chawla A,Surowiec S,Encalada R Zerna,Benson R,Cadwallader C,Clayton P,Van Herzeele I,Geenens M,Vermeir L,Moreels N,Geers S,Jawien A,Arentewicz T,Kontopodis N,Lioudaki S,Tavlas E,Nyktari V,Oberhuber A,Ibrahim A,Neu J,Nierhoff T,Moulakakis K,Kakkos S,Nikolakopoulos K,Papadoulas S,D'Oria Mario,Lepidi S,Kent F,Lowry D,Ooi S,Enemosah I,Patterson B,Williams S,Elrefaey G H,Gaba K A,Williams G F,Rodriguez D U,Khashram M,Gormley S,Hart O,Suthers E,French S,

Affiliation:

1. South East Wales Vascular Network, Aneurin Bevan University Health Board, Royal Gwent Hospital , Newport , UK

2. Centre for Trials Research, Cardiff University , Cardiff , UK

3. Artificial Limb and Appliance Centre, Rookwood Hospital, Cardiff and Vale University Health Board , Cardiff , UK

4. Department of Anaesthesia, North Bristol NHS Trust , Bristol , UK

5. c/o INVOLVE Health and Care Research Wales , Cardiff , UK

6. Division of Population Medicine, Cardiff University , Cardiff , UK

7. Bristol, Bath and Weston Vascular Network, North Bristol NHS Trust, Southmead Hospital , Bristol , UK

Abstract

Abstract Background The accuracy with which healthcare professionals (HCPs) and risk prediction tools predict outcomes after major lower limb amputation (MLLA) is uncertain. The aim of this study was to evaluate the accuracy of predicting short-term (30 days after MLLA) mortality, morbidity, and revisional surgery. Methods The PERCEIVE (PrEdiction of Risk and Communication of outcomE following major lower limb amputation: a collaboratIVE) study was launched on 1 October 2020. It was an international multicentre study, including adults undergoing MLLA for complications of peripheral arterial disease and/or diabetes. Preoperative predictions of 30-day mortality, morbidity, and MLLA revision by surgeons and anaesthetists were recorded. Probabilities from relevant risk prediction tools were calculated. Evaluation of accuracy included measures of discrimination, calibration, and overall performance. Results Some 537 patients were included. HCPs had acceptable discrimination in predicting mortality (931 predictions; C-statistic 0.758) and MLLA revision (565 predictions; C-statistic 0.756), but were poor at predicting morbidity (980 predictions; C-statistic 0.616). They overpredicted the risk of all outcomes. All except three risk prediction tools had worse discrimination than HCPs for predicting mortality (C-statistics 0.789, 0.774, and 0.773); two of these significantly overestimated the risk compared with HCPs. SORT version 2 (the only tool incorporating HCP predictions) demonstrated better calibration and overall performance (Brier score 0.082) than HCPs. Tools predicting morbidity and MLLA revision had poor discrimination (C-statistics 0.520 and 0.679). Conclusion Clinicians predicted mortality and MLLA revision well, but predicted morbidity poorly. They overestimated the risk of mortality, morbidity, and MLLA revision. Most short-term risk prediction tools had poorer discrimination or calibration than HCPs. The best method of predicting mortality was a statistical tool that incorporated HCP estimation.

Funder

Research for Patient and Public Benefit (RfPPB) programme, Health and Care Research Wales

Publisher

Oxford University Press (OUP)

Subject

Surgery

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3