Affiliation:
1. Geosciences Division, Space Applications Centre, ISRO, Ahmedabad 380 015, India
Abstract
SUMMARY
The Democratic People's Republic of Korea (North Korea) conducted its sixth and largest affirmed underground nuclear test on 2017 September 3. Analysis of Interferometric Synthetic Aperture Radar (InSAR) data revealed detailed surface displacements associated with the nuclear explosion. The nuclear explosion produced large-scale surface deformation causing decorrelation of the InSAR data directly above the test site, Mt. Mantap, while the flanks of the Mountain experienced displacements up to 0.5 m along the Line-of-Sight of the Satellite. We determined source parameters of the explosion using the Bayesian inversion of the InSAR data. The explosive yield was estimated as 245–271 kiloton (kt) of TNT, while the previous yield estimations range from 70–400 kt. We determined the nuclear source at a depth of 542 ± 30 m below Mt. Mantap (129.0769°E, 41.0324°N). We demonstrated that the Bayesian modelling of the InSAR data reduces the uncertainties in the source parameters of the nuclear test, particularly the yield and source depth that are otherwise poorly resolved in seismic methods.
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献