Probing upper mantle electrical conductivity with daily magnetic variations using global-to-local transfer functions

Author:

Guzavina M1ORCID,Grayver A1,Kuvshinov A1

Affiliation:

1. Institute of Geophysics, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland

Abstract

Summary We present new transfer functions (TFs) that can handle external electromagnetic (EM) sources of complex geometry. These TFs relate global expansion coefficients describing the source with a locally measured EM field. In this study, the new TFs concept was applied to the daily magnetic variations measured at the ground. The parameterisation of the source in terms of spherical harmonics was adopted. We used nearly 20 years of data from 125 mid-latitude observatories and explored how the results are affected by (I) solar activity conditions, (II) the choice of the prior conductivity model used for the source coefficient estimation, and (III) the presence of ocean tidal magnetic signals. We found that choosing magnetically quiet periods is beneficial due to simpler source morphology, and the choice of prior conductivity model may significantly affect the source coefficients and TFs at short periods. We further observed significant contributions by ocean tidal magnetic signals at coastal and island observatories and corrected for them. Finally, the estimated TFs were inverted for the mantle conductivity at several locations representing different geological settings.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3