Affiliation:
1. Institute of Geophysics, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Abstract
Summary
We present new transfer functions (TFs) that can handle external electromagnetic (EM) sources of complex geometry. These TFs relate global expansion coefficients describing the source with a locally measured EM field. In this study, the new TFs concept was applied to the daily magnetic variations measured at the ground. The parameterisation of the source in terms of spherical harmonics was adopted. We used nearly 20 years of data from 125 mid-latitude observatories and explored how the results are affected by (I) solar activity conditions, (II) the choice of the prior conductivity model used for the source coefficient estimation, and (III) the presence of ocean tidal magnetic signals. We found that choosing magnetically quiet periods is beneficial due to simpler source morphology, and the choice of prior conductivity model may significantly affect the source coefficients and TFs at short periods. We further observed significant contributions by ocean tidal magnetic signals at coastal and island observatories and corrected for them. Finally, the estimated TFs were inverted for the mantle conductivity at several locations representing different geological settings.
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献