Attenuation in the mantle wedge beneath super-volcanoes of the Taupo Volcanic Zone, New Zealand

Author:

Eberhart-Phillips Donna12ORCID,Bannister Stephen3,Reyners Martin3

Affiliation:

1. GNS Science, Private Bag 1930, Dunedin 9054, New Zealand

2. Department of Earth and Planetary Sciences, Univ. of California Davis, Davis, CA 95616, USA

3. GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand

Abstract

SUMMARY The Taupo Volcanic Zone has a 120-km-long section of rhyolitic volcanism, within which is a 60-km-long area of supervolcanoes. The underlying subducted slab has along-strike heterogeneity due to the Hikurangi Plateau's prior subduction history. We studied 3-D Qs (1/attenuation) using t* spectral decay from local earthquakes to 370-km depth. Selection emphasized those events with data quality to sample the low Qs mantle wedge, and Qs inversion used varied linking of nodes to obtain resolution in regions of sparse stations, and 3-D initial model. The imaged mantle wedge has a 250-km-long 150-km-wide zone of low Qs (<300) at 65–85 km depth which includes two areas of very low Qs (<120). The most pronounced low Qs feature underlies the Mangakino and Whakamaru super-eruptive calderas, with inferred melt ascending under the central rift structure. The slab is characterized by high Qs (1200–2000), with a relatively small area of reduction in Qs (<800) underlying Taupo at 65-km depth, and adjacent to the mantle wedge low Qs. This suggests abundant dehydration fluids coming off the slab at specific locations and migrating near-vertically upward to the volcanic zone. The seismicity in the subducted slab has a patch of dense seismicity underlying the rhyolitic volcanic zone, consistent with locally abundant fractures and fluid flux. The relationship between the along-arc and downdip slab heterogeneity and dehydration implies that patterns of volcanism may be strongly influenced by large initial outer rise hydration which occurred while the edge of the Hikurangi Plateau hindered subduction. A second very low Qs feature is 50-km west above the 140-km-depth slab. The distinction suggests involvement of a second dehydration peak at that depth, consistent with some numerical models.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3