Imaging the magmatic system beneath the Krafla geothermal field, Iceland: A new 3-D electrical resistivity model from inversion of magnetotelluric data

Author:

Lee Benjamin1ORCID,Unsworth Martyn1,Árnason Knútur2,Cordell Darcy1

Affiliation:

1. Department of Physics, University of Alberta, Edmonton, T6G 2R3, Canada

2. ISOR Iceland GeoSurvey, Grensásvegur 9, 108 Reykjavik, Iceland

Abstract

SUMMARY Krafla is an active volcanic field and a high-temperature geothermal system in northeast Iceland. As part of a program to produce more energy from higher temperature wells, the IDDP-1 well was drilled in 2009 to reach supercritical fluid conditions below the Krafla geothermal field. However, drilling ended prematurely when the well unexpectedly encountered rhyolite magma at a depth of 2.1 km. In this paper we re-examine the magnetotelluric (MT) data that were used to model the electrical resistivity structure at Krafla. We present a new 3-D resistivity model that differs from previous inversions due to (1) using the full impedance tensor data and (2) a finely discretized mesh with horizontal cell dimensions of 100 m by 100 m. We obtained similar resistivity models from using two different prior models: a uniform half-space, and a previously published 1-D resistivity model. Our model contains a near-surface resistive layer of unaltered basalt and a low resistivity layer of hydrothermal alteration (C1). A resistive region (R1) at 1 to 2 km depth corresponds to chlorite-epidote alteration minerals that are stable at temperatures of about 220 to 500 °C. A low resistivity feature (C2) coincides with the Hveragil fault system, a zone of increased permeability allowing interaction of aquifer fluids with magmatic fluids and gases. Our model contains a large, low resistivity zone (C3) below the northern half of the Krafla volcanic field that domes upward to a depth of about 1.6 km b.s.l. C3 is partially coincident with reported low S-wave velocity zones which could be due to partial melt or aqueous fluids. The low resistivity could also be attributed to dehydration and decomposition of chlorite and epidote that occurs above 500 °C. As opposed to previously published resistivity models, our resistivity model shows that IDDP-1 encountered rhyolite magma near the upper edge of C3, where it intersects C2. In order to assess the sensitivity of the MT data to melt at the bottom of IDDP-1, we added hypothetical magma bodies with resistivities of 0.1 to 30 Ωm to our resistivity model and compared the synthetic MT data to the original inversion response. We used two methods to compare the MT data fit: (1) the change in r.m.s. misfit and (2) an asymptotic p-value obtained from the Kolmogorov–Smirnov (K–S) statistical test on the two sets of data residuals. We determined that the MT data can only detect sills that are unrealistically large (2.25 km3) with very low resistivities (0.1 or 0.3 Ωm). Smaller magma bodies (0.125 and 1 km3) were not detected; thus the MT data are not sensitive to small rhyolite magma bodies near the bottom of IDDP-1. Our tests gave similar results when evaluating the changes in r.m.s. misfit and the K–S test p-values, but the K–S test is a more objective method than appraising a relative change in r.m.s. misfit. Our resistivity model and resolution tests are consistent with the idea of rhyolite melt forming by re-melting of hydrothermally altered basalt on the edges of a deeper magma body.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference82 articles.

1. The thin hot plume beneath Iceland;Allen;Geophys. J. Int.,1999

2. The resistivity structure of high-temperature geothermal systems in Iceland;Árnason,2000

3. A study of the Krafla volcano using gravity, micro-earthquake and MT data;Árnason,2008

4. Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland;Árnason;Geothermics,2010

5. The Krafla spreading segment, Iceland: 1. Three‐dimensional crustal structure and the spatial and temporal distribution of local earthquakes;Arnott;J. geophys. Res.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3