Effect of the lateral topographic density distribution on interpretational properties of Bouguer gravity maps

Author:

Rathnayake Samurdhika1,Tenzer Robert1,Pitoňák Martin2ORCID,Novák Pavel2

Affiliation:

1. Department of Land Surveying and Geo-Informatics, sighifican, Hong Kong

2. New Technologies for the Information Society (NTIS), Faculty of Applied Sciences, University of West Bohemia, Czech Republic

Abstract

Summary Until recently, the information about the topographic density distribution has been limited to only certain regions and some countries, while missing in the global context. The UNB_TopoDens is the first model that provides the information about a lateral topographic density globally. The analysis of this model also reveals that the average topographic density for the entire continental landmass (excluding polar glaciers) is 2247 kg m−3. This density differs significantly from the value of 2670 kg m−3 that is typically adopted to represent the continental upper crustal density. In this study, we use the UNB_TopoDens density model to inspect how the topographic density variations affect interpretational properties of Bouguer gravity maps. Since this model provides also the information about density uncertainties of individual lithologies (main rock types), we estimate the corresponding errors in the Bouguer gravity data. Despite a new estimate of the average topographic density corresponds to relative changes of ∼16 per cent in values of the topographic gravity correction, these changes do not affect interpretational properties of Bouguer gravity maps. The anomalous topographic density distribution (taken with respect to the average density of 2247 kg m−3), however, modifies the Bouguer gravity pattern. We demonstrate that the gravitational contribution of anomalous topographic density is globally mostly within ± 25 mGal, but much large values are detected in Himalaya, Tibet, central Andes and along the East African Rift System. Our estimates also indicate that errors in the Bouguer gravity data attributed to topographic density uncertainties are mostly less than ± 15 mGal, but in mountainous regions could reach large values exceeding even ± 50 mGal. Unarguably, the UNB_TopoDens model provides an improved information about the global topographic density variations and their uncertainties. Nevertheless, much more in situ measurements of rock density samples together with detailed 3D geological models are still necessary to understand better the actual density distribution within the whole topography, particularly to mention a density change with depth.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3