The Combined Effect of Elevated O3 Levels and TYLCV Infection Increases the Fitness of Bemisia tabaci Mediterranean on Tomato Plants

Author:

Cui Hongying1,Sun Yucheng2,Zhao Zihua1ORCID,Zhang Youjun3ORCID

Affiliation:

1. Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P. R. China

2. State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China

3. Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China

Abstract

AbstractGlobal change and biotic stress, such as tropospheric contamination and virus infection, can individually modify the quality of host plants, thereby altering the palatability of the plant for herbivorous insects. The bottom-up effects of elevated O3 and tomato yellow leaf curl virus (TYLCV) infection on tomato plants and the associated performance of Bemisia tabaci Mediterranean (MED) were determined in open-top chambers. Elevated O3 decreased eight amino acid levels and increased the salicylic acid (SA) and jasmonic acid (JA) content and the gene expression of pathogenesis-related protein (PR1) and proteinase inhibitor (PI1) in both wild-type (CM) and JA defense-deficient tomato genotype (spr2). TYLCV infection and the combination of elevated O3 and TYLCV infection increased eight amino acids levels, SA content and PR1 expression, and decreased JA content and PI1 expression in both tomato genotypes. In uninfected tomato, elevated O3 increased developmental time and decreased fecundity by 6.1 and 18.8% in the CM, respectively, and by 6.8 and 18.9% in the spr2, respectively. In TYLCV-infected tomato, elevated O3 decreased developmental time and increased fecundity by 4.6 and 14.2%, respectively, in the CM and by 4.3 and 16.8%, respectively, in the spr2. These results showed that the interactive effects of elevated O3 and TYLCV infection partially increased the amino acid content and weakened the JA-dependent defense, resulting in increased population fitness of MED on tomato plants. This study suggests that whiteflies would be more successful at TYLCV-infected plants than at uninfected plants in elevated O3 levels.

Funder

National Natural Science Foundation of China

Beijing Key Laboratory for Pest Control and Sustainable Cultivation of Vegetables and the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IVFCAAS

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3