Strengthening sleep–autonomic interaction via acoustic enhancement of slow oscillations

Author:

Grimaldi Daniela1,Papalambros Nelly A1,Reid Kathryn J1,Abbott Sabra M1,Malkani Roneil G1,Gendy Maged1,Iwanaszko Marta2,Braun Rosemary I23ORCID,Sanchez Daniel J4,Paller Ken A5ORCID,Zee Phyllis C1

Affiliation:

1. Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL

2. Biostatistics Division, Feinberg School of Medicine, Northwestern University, Chicago, IL

3. Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL

4. SRI International, Menlo Park, CA

5. Department of Psychology, Northwestern University, Evanston, IL

Abstract

Abstract Slow-wave sleep (SWS) is important for overall health since it affects many physiological processes including cardio-metabolic function. Sleep and autonomic nervous system (ANS) activity are closely coupled at anatomical and physiological levels. Sleep-related changes in autonomic function are likely the main pathway through which SWS affects many systems within the body. There are characteristic changes in ANS activity across sleep stages. Notably, in non-rapid eye-movement sleep, the progression into SWS is characterized by increased parasympathetic activity, an important measure of cardiovascular health. Experimental manipulations that enhance slow-wave activity (SWA, 0.5–4 Hz) can improve sleep-mediated memory and immune function. However, effects of SWA enhancement on autonomic regulation have not been investigated. Here, we employed an adaptive algorithm to deliver 50 ms sounds phase-locked to slow-waves, with regular pauses in stimulation (~5 s ON/~5 s OFF), in healthy young adults. We sought to determine whether acoustic enhancement of SWA altered parasympathetic activity during SWS assessed with heart rate variability (HRV), and evening-to-morning changes in HRV, plasma cortisol, and blood pressure. Stimulation, compared with a sham condition, increased SWA during ON versus OFF intervals. This ON/OFF SWA enhancement was associated with a reduction in evening-to-morning change of cortisol levels and indices of sympathetic activity. Furthermore, the enhancement of SWA in ON intervals during sleep cycles 2–3 was accompanied by an increase in parasympathetic activity (high-frequency, HRV). Together these findings suggest that acoustic enhancement of SWA has a positive effect on autonomic function in sleep. Approaches to strengthen brain–heart interaction during sleep could have important implications for cardiovascular health.

Funder

DARPA

NIH

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3