Autonomic mechanisms of blood pressure alterations during sleep in orexin/hypocretin-deficient narcoleptic mice

Author:

Alvente Sara1,Berteotti Chiara1ORCID,Bastianini Stefano1,Lo Martire Viviana1,Matteoli Gabriele1,Silvani Alessandro1ORCID,Zoccoli Giovanna1ORCID

Affiliation:

1. PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy

Abstract

Abstract Study Objectives Increase in arterial pressure (AP) during sleep and smaller differences in AP between sleep and wakefulness have been reported in orexin (hypocretin)-deficient mouse models of narcolepsy type 1 (NT1) and confirmed in NT1 patients. We tested whether these alterations are mediated by parasympathetic or sympathetic control of the heart and/or resistance vessels in an orexin-deficient mouse model of NT1. Methods Thirteen orexin knock-out (ORX-KO) mice were compared with 12 congenic wild-type (WT) mice. The electroencephalogram, electromyogram, and AP of the mice were recorded in the light (rest) period during intraperitoneal infusion of atropine methyl nitrate, atenolol, or prazosin to block muscarinic cholinergic, β 1-adrenergic, or α 1-adrenergic receptors, respectively, while saline was infused as control. Results AP significantly depended on a three-way interaction among the mouse group (ORX-KO vs WT), the wake–sleep state, and the drug or vehicle infused. During the control vehicle infusion, ORX-KO had significantly higher AP values during REM sleep, smaller decreases in AP from wakefulness to either non-rapid-eye-movement (non-REM) sleep or REM sleep, and greater increases in AP from non-REM sleep to REM sleep compared to WT. These differences remained significant with atropine methyl nitrate, whereas they were abolished by prazosin and, except for the smaller AP decrease from wakefulness to REM sleep in ORX-KO, also by atenolol. Conclusions Sleep-related alterations of AP due to orexin deficiency significantly depend on alterations in cardiovascular sympathetic control in a mouse model of NT1.

Funder

Fundamental Oriented Research

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Clinical Neurology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3