Circadian and sleep/wake-dependent variations in tau phosphorylation are driven by temperature

Author:

Guisle Isabelle1ORCID,Gratuze Maud1,Petry Séréna1,Morin Françoise2,Keraudren Rémi1,Whittington Robert A3,Hébert Sébastien S12,Mongrain Valérie45ORCID,Planel Emmanuel12

Affiliation:

1. Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada

2. Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada

3. Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, NY

4. Research Center and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (CIUSSS-NIM), Montréal, QC, Canada

5. Department of Neuroscience, Université de Montréal, Montréal, QC, Canada

Abstract

AbstractStudy ObjectivesAggregates of hyperphosphorylated tau protein are a hallmark of Alzheimer’s disease (AD) and other tauopathies. Sleep disturbances are common in AD patients, and insufficient sleep may be a risk factor for AD. Recent evidence suggests that tau phosphorylation is dysregulated by sleep disturbances in mice. However, the physiological regulation of tau phosphorylation during the sleep–wake cycle is currently unknown. We thus aimed to determine whether tau phosphorylation is regulated by circadian rhythms, inherently linked to the sleep–wake cycle.MethodsTo answer these questions, we analyzed by Western blotting tau protein and associated kinases and phosphatases in the brains of awake, sleeping, and sleep-deprived B6 mice. We also recorded their temperature.ResultsWe found that tau phosphorylation undergoes sleep-driven circadian variations as it is hyperphosphorylated during sleep but not during acute sleep deprivation. Moreover, we demonstrate that the mechanism behind these changes involves temperature, as tau phosphorylation was inversely correlated with circadian- and sleep deprivation-induced variations in body temperature, and prevented by housing the animals at a warmer temperature. Notably, similar changes in tau phosphorylation were reproduced in neuronal cells exposed to temperatures recorded during the sleep–wake cycle. Our results also suggest that inhibition of protein phosphatase 2A (PP2A) may explain the hyperphosphorylation of tau during sleep-induced hypothermia.ConclusionTaken together, our results demonstrate that tau phosphorylation follows a circadian rhythm driven mostly by body temperature and sleep, and provide the physiological basis for further understanding how sleep deregulation can affect tau and ultimately AD pathology.

Funder

National Sciences and Engineering Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3