Effect of chronic intermittent hypoxia on ocular and intraoral mechanical allodynia mediated via the calcitonin gene-related peptide in a rat

Author:

Katagiri Ayano1ORCID,Kishimoto Saki12,Okamoto Yoshie1,Yamada Masaharu12ORCID,Niwa Hitoshi2,Bereiter David A3,Kato Takafumi1ORCID

Affiliation:

1. Department of Oral Physiology, Osaka University Graduate School of Dentistry , Osaka , Japan

2. Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry , Osaka , Japan

3. Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry , MN , USA

Abstract

Abstract Study Objectives Obstructive sleep apnea, a significant hypoxic condition, may exacerbate several orofacial pain conditions. The study aims to define the involvement of calcitonin gene-related peptide (CGRP) in peripheral and central sensitization and in evoking orofacial mechanical allodynia under chronic intermittent hypoxia (CIH). Methods Male rats were exposed to CIH. Orofacial mechanical allodynia was assessed using the eyeblink test and the two-bottle preference drinking test. The CGRP-immunoreactive neurons in the trigeminal ganglion (TG), CGRP-positive primary afferents projecting to laminae I–II of the trigeminal spinal subnucleus caudalis (Vc), and neural responses in the second-order neurons of the Vc were determined by immunohistochemistry. CGRP receptor antagonist was administrated in the TG. Results CIH-induced ocular and intraoral mechanical allodynia. CGRP-immunoreactive neurons and activated satellite glial cells (SGCs) were significantly increased in the TG and the number of cFos-immunoreactive cells in laminae I–II of the Vc were significantly higher in CIH rats compared to normoxic rats. Local administration of the CGRP receptor antagonist in the TG of CIH rats attenuated orofacial mechanical allodynia; the number of CGRP-immunoreactive neurons and activated SGCs in the TG, and the density of CGRP-positive primary afferent terminals and the number of cFos-immunoreactive cells in laminae I–II of the Vc were significantly lower compared to vehicle-administrated CIH rats. Conclusions An increase in CGRP in the TG induced by CIH, as well as orofacial mechanical allodynia and central sensitization of second-order neurons in the Vc, supported the notion that CGRP plays a critical role in CIH-induced orofacial mechanical allodynia.

Funder

German Science Foundation

Czech Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3