Rapid eye movement sleep behavior disorder: a narrative review from a technological perspective

Author:

Gnarra Oriella123ORCID,Wulf Marie-Angela1ORCID,Schäfer Carolin1ORCID,Nef Tobias13,Bassetti Claudio L A1ORCID

Affiliation:

1. Department of Neurology, Inselspital, University Hospital , Bern , Switzerland

2. Department of Health Sciences and Technology, Sensory-Motor System Lab, Institute of Robotics and Intelligent Systems , ETH Zurich , Switzerland and

3. Gerontechnology and Rehabilitation Group, ARTORG Centre for Biomedical Engineering Research, University of Bern , Bern , Switzerland

Abstract

Abstract Study objectives Isolated rapid eye movement sleep behavior disorder (iRBD) is a parasomnia characterized by dream enactment. It represents a prodromal state of α-synucleinopathies, like Parkinson’s disease. In recent years, biomarkers of increased risk of phenoconversion from iRBD to overt α-synucleinopathies have been identified. Currently, diagnosis and monitoring rely on self-reported reports and polysomnography (PSG) performed in the sleep lab, which is limited in availability and cost-intensive. Wearable technologies and computerized algorithms may provide comfortable and cost-efficient means to not only improve the identification of patients with iRBD but also to monitor risk factors of phenoconversion. In this work, we review studies using these technologies to identify iRBD or monitor phenoconversion biomarkers. Methods A review of articles published until May 31, 2022 using the Medline database was performed. We included only papers in which participants with RBD were part of the study population. The selected papers were divided into four sessions: actigraphy, gait analysis systems, computerized algorithms, and novel technologies. Results In total, 25 articles were included in the review. Actigraphy, wearable accelerometers, pressure mats, smartphones, tablets, and algorithms based on PSG signals were used to identify RBD and monitor the phenoconversion. Rest–activity patterns, core body temperature, gait, and sleep parameters were able to identify the different stages of the disease. Conclusions These tools may complement current diagnostic systems in the future, providing objective ambulatory data obtained comfortably and inexpensively. Consequently, screening for iRBD and follow-up will be more accessible for the concerned patient cohort.

Funder

European Sleep Foundation through the Majid Foundation

Interfaculty Research Cooperation Decoding Sleep from the University of Bern

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3