Major alteration of motor control during rapid eye movements sleep in mice models of sleep disorders

Author:

Grenot Maxime12,Roman Alexis12,Villalba Manon12,Morel Anne-Laure12,Fort Patrice12,Arthaud Sébastien12,Libourel Paul-Antoine12,Peyron Christelle12

Affiliation:

1. Université Claude Bernard Lyon 1

2. CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL UMR5292, U1028, SLEEP team , Bron , France

Abstract

Abstract Alteration of motor control during rapid eye movements (REM) sleep has been extensively described in sleep disorders, in particular in isolated REM sleep behavior disorder (iRBD) and narcolepsy type 1 (NT1). NT1 is caused by the loss of orexin/hypocretin (ORX) neurons. Unlike in iRBD, the RBD comorbid symptoms of NT1 are not associated with alpha-synucleinopathies. To determine whether the chronic absence of ORX neuropeptides is sufficient to induce RBD symptoms, we analyzed during REM sleep the EMG signal of the prepro-hypocretin knockout mice (ORX−/−), a recognized mouse model of NT1. Then, we evaluated the severity of motor alterations by comparing the EMG data of ORX−/− mice to those of mice with a targeted suppression of the sublaterodorsal glutamatergic neurotransmission, a recognized rodent model of iRBD. We found a significant alteration of tonic and phasic components of EMG during REM sleep in ORX−/− mice, with more phasic events and more REM sleep episodes without atonia compared to the control wild-type mice. However, these phasic events were fewer, shorter, and less complex in ORX−/− mice compared to the RBD-like ORX−/− mice. We thus show that ORX deficiency, as seen in NT1, is sufficient to impair muscle atonia during REM sleep with a moderate severity of alteration as compared to isolated RBD mice. As described in NT1 patients, we report a major interindividual variability in the severity and frequency of RBD symptoms in ORX-deficient mice.

Funder

Fédération pour la Recherche sur le Cerveau

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3