The relationship between fasting-induced torpor, sleep, and wakefulness in laboratory mice

Author:

Huang Yi-Ge1ORCID,Flaherty Sarah J1,Pothecary Carina A2,Foster Russell G2,Peirson Stuart N2ORCID,Vyazovskiy Vladyslav V1ORCID

Affiliation:

1. Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT,UK

2. Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE,UK

Abstract

Abstract Study Objectives Torpor is a regulated and reversible state of metabolic suppression used by many mammalian species to conserve energy. Whereas the relationship between torpor and sleep has been well-studied in seasonal hibernators, less is known about the effects of fasting-induced torpor on states of vigilance and brain activity in laboratory mice. Methods Continuous monitoring of electroencephalogram (EEG), electromyogram (EMG), and surface body temperature was undertaken in adult, male C57BL/6 mice over consecutive days of scheduled restricted feeding. Results All animals showed bouts of hypothermia that became progressively deeper and longer as fasting progressed. EEG and EMG were markedly affected by hypothermia, although the typical electrophysiological signatures of non-rapid eye movement (NREM) sleep, rapid eye movement (REM) sleep, and wakefulness enabled us to perform vigilance-state classification in all cases. Consistent with previous studies, hypothermic bouts were initiated from a state indistinguishable from NREM sleep, with EEG power decreasing gradually in parallel with decreasing surface body temperature. During deep hypothermia, REM sleep was largely abolished, and we observed shivering-associated intense bursts of muscle activity. Conclusions Our study highlights important similarities between EEG signatures of fasting-induced torpor in mice, daily torpor in Djungarian hamsters and hibernation in seasonally hibernating species. Future studies are necessary to clarify the effects on fasting-induced torpor on subsequent sleep.

Funder

MRC and Stroke Association

John Fell OUP Research Fund

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Neurology (clinical)

Reference106 articles.

1. Oscillating circuitries in the sleeping brain;Adamantidis;Nat Rev Neurosci.,2019

2. Control of sleep and wakefulness;Brown;Physiol Rev.,2012

3. Animal sleep: a review of sleep duration across phylogeny;Campbell;Neurosci Biobehav Rev.,1984

4. The function(s) of sleep;Frank;Handb Exp Pharmacol.,2019

5. There is no mystery to sleep;Foster;Psych J.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3