1193 Accuracy of a Commercial Wearable in Detecting Sleep Stages Compared to Polysomnography in Adults: Considering Sleep Classification Methods and Effects of Evening Alcohol Consumption

Author:

Menghini L1,Alschuler V2,Claudatos S2,Goldstone A2,Baker F2,Cellini N1,Colrain I2,de Zambotti M2

Affiliation:

1. Department of General Psychology, University of Padua, Padova, ITALY

2. Center for Health Sciences, SRI International, Menlo Park, CA

Abstract

Abstract Introduction Commercial wearable devices have shown the capability of collecting and processing multisensor information (motion, cardiac activity), claiming to be able to measure sleep-wake patterns and differentiate sleep stages. While using these devices, users should be aware of their accuracy, sources of measurement error and contextual factors that may affect their performance. Here, we evaluated the agreement between Fitbit Charge 2™ and PSG in adults, considering effects of two different sleep classification methods and pre-sleep alcohol consumption. Methods Laboratory-based synchronized recordings of device and PSG data were obtained from 14 healthy adults (42.6±9.7y; 6 women), who slept between one and three nights in the lab, for a total of 27 nights of data. On 10 of these nights, participants consumed alcohol (up to 4 standard drinks) in the 2 hours before bedtime. Device performance relative to PSG was evaluated using epoch-by-epoch and Bland-Altman analyses, with device data obtained from a data-management platform, Fitabase, via two methods one that accounts for short wakes (SW, awakenings that last less than 180s) and one that does not (not-SW). Results SW and not-SW methods were similar in scoring (96.76% agreement across epochs), although the SW method had better accuracy for differentiating “light”, “deep”, and REM sleep; but produced more false positives in wake detection. The device (SW-method) classified epochs of wake, “light” (N1+N2), “deep” (N3) and REM sleep with 56%, 77%, 46%, and 62% sensitivity, respectively. Bland-Altman analysis showed that the device significantly underestimated “light” (~19min) and “deep” (~26min) sleep. Alcohol consumption enhanced PSG-device discrepancies, in particular for REM sleep (p=0.01). Conclusion Our results indicate promising accuracy in sleep-wake and sleep stage identification for this device, particularly when accounting for short wakes, as compared to PSG. Alcohol consumption, as well as other potential confounders that could affect measurement accuracy should be further investigated. Support This study was supported by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) grant R21-AA024841 (IMC and MdZ). The content is solely the responsibility of the authors and does not necessarily represent the official views the National Institutes of Health.

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Clinical Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3