1204 Analyzing User Journey Data In Digital Health: Predicting Dropout From A Digital CBT-I Intervention

Author:

Bremer V1,Chow P2,Funk B1,Thorndike F3,Ritterband L2

Affiliation:

1. Leuphana University, Lunenberg, GERMANY

2. University of Virginia, Charlottesville, VA

3. Pear Therapeutics, Boston, MA

Abstract

Abstract Introduction Intervention dropout is an important factor for the evaluation and implementation of digital therapeutics, including in insomnia. Large amounts of individualized data (logins, questionnaires, EMA data) in these interventions can combine to create user journeys - the data generated by the path an individual takes to navigate the digital therapeutic. User journeys can provide insight about how likely users are to drop out of an intervention on an individual level and lead to increased prediction performance. Thus, the goal of this study is to provide a step-by-step guide for the analysis of user journeys and utilize this guide to predict intervention dropout, illustrated with an example from a data in a RCT of digital therapeutic for chronic insomnia, for which outcomes have previously been published. Methods Analysis of user journeys includes data transformation, feature engineering, and statistical model analysis, using machine learning techniques. A framework is established to leverage user journeys to predict various behaviors. For this study, the framework was applied to predict dropouts of 151 participants from a fully automated web-based program (SHUTi) that delivered cognitive behavioral therapy for insomnia. For this task, support vector machines, logistic regression with regularization, and boosted decision trees were applied at different points in 9-week intervention. These techniques were evaluated based on their predictive performance. Results After model evaluation, a decision tree ensemble achieved AUC values ranging between 0.6-0.9 based on application of machine earning techniques. Various handcrafted and theory-driven features (e.g., time to complete certain intervention steps, time to get out of bed after arising, and days since last system interaction contributed to prediction performance. Conclusion Results indicate that utilizing a user journey framework and analysis can predict intervention dropout. Further, handcrafted theory-driven features can increase prediction performance. This prediction of dropout could lead to an enhanced clinical decision-making in digital therapeutics. Support The original study evaluating the efficacy of this intervention has been reported elsewhere and was funded by grant R01 MH86758 from the National Institute of Mental Health.

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Clinical Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3