Dexmedetomidine-induced deep sedation mimics non-rapid eye movement stage 3 sleep: large-scale validation using machine learning

Author:

Ramaswamy Sowmya M1ORCID,Weerink Maud A S1,Struys Michel M R F12,Nagaraj Sunil B3

Affiliation:

1. University of Groningen, University Medical Center Groningen, Department of Anesthesiology, Groningen, The Netherlands

2. Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium

3. University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy & Pharmacology, Groningen, The Netherlands

Abstract

Abstract Study Objectives Dexmedetomidine-induced electroencephalogram (EEG) patterns during deep sedation are comparable with natural sleep patterns. Using large-scale EEG recordings and machine learning techniques, we investigated whether dexmedetomidine-induced deep sedation indeed mimics natural sleep patterns. Methods We used EEG recordings from three sources in this study: 8,707 overnight sleep EEG and 30 dexmedetomidine clinical trial EEG. Dexmedetomidine-induced sedation levels were assessed using the Modified Observer’s Assessment of Alertness/Sedation (MOAA/S) score. We extracted 22 spectral features from each EEG recording using a multitaper spectral estimation method. Elastic-net regularization method was used for feature selection. We compared the performance of several machine learning algorithms (logistic regression, support vector machine, and random forest), trained on individual sleep stages, to predict different levels of the MOAA/S sedation state. Results The random forest algorithm trained on non-rapid eye movement stage 3 (N3) predicted dexmedetomidine-induced deep sedation (MOAA/S = 0) with area under the receiver operator characteristics curve >0.8 outperforming other machine learning models. Power in the delta band (0–4 Hz) was selected as an important feature for prediction in addition to power in theta (4–8 Hz) and beta (16–30 Hz) bands. Conclusions Using a large-scale EEG data-driven approach and machine learning framework, we show that dexmedetomidine-induced deep sedation state mimics N3 sleep EEG patterns. Clinical Trials Name—Pharmacodynamic Interaction of REMI and DMED (PIRAD), URL—https://clinicaltrials.gov/ct2/show/NCT03143972, and registration—NCT03143972.

Funder

department of Anesthesiology, University of Groningen, University Medical Center Groningen, The Netherlands

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3