Cyclic AMP response element-binding protein is required in excitatory neurons in the forebrain to sustain wakefulness

Author:

Wimmer Mathieu E1,Cui Rosa2,Blackwell Jennifer M2,Abel Ted3ORCID

Affiliation:

1. Department of Psychology and Program in Neuroscience, Temple University, Philadelphia, PA

2. Neuroscience Graduate Group, Department of Biology, University of Pennsylvania, Philadelphia, PA

3. Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA

Abstract

Abstract The molecular and intracellular signaling processes that control sleep and wake states remain largely unknown. A consistent observation is that the cyclic adenosine monophosphate (AMP) response element-binding protein (CREB), an activity-dependent transcription factor, is differentially activated during sleep and wakefulness. CREB is phosphorylated by the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway as well as other kinases, and phosphorylated CREB promotes the transcription of target genes. Genetic studies in flies and mice suggest that CREB signaling influences sleep/wake states by promoting and stabilizing wakefulness. However, it remains unclear where in the brain CREB is required to drive wakefulness. In rats, CREB phosphorylation increases in the cerebral cortex during wakefulness and decreases during sleep, but it is not known if this change is functionally relevant to the maintenance of wakefulness. Here, we used the Cre/lox system to conditionally delete CREB in the forebrain (FB) and in the locus coeruleus (LC), two regions known to be important for the production of arousal and wakefulness. We used polysomnography to measure sleep/wake levels and sleep architecture in conditional CREB mutant mice and control littermates. We found that FB-specific deletion of CREB decreased wakefulness and increased non-rapid eye movement sleep. Mice lacking CREB in the FB were unable to sustain normal periods of wakefulness. On the other hand, deletion of CREB from LC neurons did not change sleep/wake levels or sleep/wake architecture. Taken together, these results suggest that CREB is required in neurons within the FB but not in the LC to promote and stabilize wakefulness.

Funder

National Institute on Aging

National Heart, Lung, and Blood Institute

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3