Plasma exosomes in OSA patients promote endothelial senescence: effect of long-term adherent continuous positive airway pressure

Author:

Khalyfa Abdelnaby1,Marin Jose M2,Qiao Zhuanhong1,Rubio David Sanz2,Kheirandish-Gozal Leila1,Gozal David1

Affiliation:

1. Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO

2. Translational Research Unit, Hospital Universitario Miguel Servet & IISAragon, CIBERES, Zaragoza, Spain

Abstract

Abstract Obstructive sleep apnea (OSA) is associated with increased risk for end-organ morbidities, which can collectively be viewed as accelerated aging. Vascular senescence is an important contributor to end-organ dysfunction. Exosomes are released ubiquitously into the circulation, and transfer their cargo to target cells facilitating physiological and pathological processes. Plasma exosomes from 15 patients with polysomnographically diagnosed OSA at baseline (OSA-T1) after 12 months of adherent continuous positive airway pressure (CPAP) treatment (OSA-T2), 13 untreated OSA patients at 12-month intervals (OSA-NT1, OSA-NT2), and 12 controls (CO1 and CO2) were applied on naïve human microvascular endothelialcells-dermal (HMVEC-d). Expression of several senescence gene markers including p16 (CDKN2A), SIRT1, and SIRT6 and immunostaining for β-galactosidase activity (x-gal) were performed. Endothelial cells were also exposed to intermittent hypoxia (IH) or normoxia (RA) or treated with hydrogen peroxide (H2O2), stained with x-gal and subjected to qRT-PCR. Exosomes from OSA-T1, OSA-NT1, and OSA-NT2 induced significant increases in x-gal staining compared to OSA-T2, CO1, and CO2 (p-value < 0.01). p16 expression was significantly increased (p < 0.01), while SIRT1 and SIRT6 expression levels were decreased (p < 0.02 and p < 0.009). Endothelial cells exposed to IH or to H2O2 showed significant increases in x-gal staining (p < 0.001) and in senescence gene expression. Circulating exosomes in untreated OSA induce marked and significant increases in senescence of naïve endothelial cells, which are only partially reversible upon long-term adherent CPAP treatment. Furthermore, endothelial cells exposed to IH or H2O2 also elicit similar responses. Thus, OSA either directly or indirectly via exosomes may initiate and exacerbate cellular aging, possibly via oxidative stress-related pathways.

Funder

National Institutes of Health

Instituto Carlos III, Spanish Ministry of Health

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Clinical Neurology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3