Automatic sleep spindles identification and classification with multitapers and convolution

Author:

Zapata Ignacio A1ORCID,Wen Peng2,Jones Evan3,Fjaagesund Shauna4,Li Yan1

Affiliation:

1. School of Mathematics, Physics and Computing, University of Southern Queensland , Darling Heights , Australia

2. School of Engineering, University of Southern Queensland , Toowoomba , Australia

3. Health Hub Doctors Morayfield, Queensland, 4506, The University of the Sunshine Coast , Queensland, 4556 , Australia

4. Health Developments Corporation, Health Hub Morayfield, Queensland, 4506, University of the Sunshine Coast , Sippy Downs, Queensland, 4556 , Australia

Abstract

Abstract Sleep spindles are isolated transient surges of oscillatory neural activity present during sleep stages 2 and 3 in the nonrapid eye movement (NREM). They can indicate the mechanisms of memory consolidation and plasticity in the brain. Spindles can be identified across cortical areas and classified as either slow or fast. There are spindle transients across different frequencies and power, yet most of their functions remain a mystery. Using several electroencephalogram (EEG) databases, this study presents a new method, called the “spindles across multiple channels” (SAMC) method, for identifying and categorizing sleep spindles in EEGs during the NREM sleep. The SAMC method uses a multitapers and convolution (MT&C) approach to extract the spectral estimation of different frequencies present in sleep EEGs and graphically identify spindles across multiple channels. The characteristics of spindles, such as duration, power, and event areas, are also extracted by the SAMC method. Comparison with other state-of-the-art spindle identification methods demonstrated the superiority of the proposed method with an agreement rate, average positive predictive value, and sensitivity of over 90% for spindle classification across the three databases used in this paper. The computing cost was found to be, on average, 0.004 seconds per epoch. The proposed method can potentially improve the understanding of the behavior of spindles across the scalp and accurately identify and categories sleep spindles.

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Neurology (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3