Association between sleep traits and biological aging risk: a Mendelian randomization study based on 157 227 cases and 179 332 controls

Author:

Wang Mei1,Yang Meiqi1,Liang Shuang1,Wang Nanxi1,Wang Yifan1,Sambou Muhammed Lamin1,Qin Na12,Zhu Meng12,Wang Cheng123,Jiang Yue124,Dai Juncheng124

Affiliation:

1. Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University , Nanjing 211166 , China

2. Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Genomic Science and Precision Medicine Institute, Gusu School, Nanjing Medical University , Nanjing 211166 , China

3. Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University , Nanjing 211166 , China

4. Nanjing Yike Population Health Research Institute , Nanjing 211166 , China

Abstract

Abstract Study Objectives To investigate whether sleep traits are associated with the risk of biological aging using a case–control design with Mendelian randomization (MR) analyses. Methods We studied 336 559 participants in the UK Biobank cohort, including 157 227 cases of accelerated biological aging and 179 332 controls. PhenoAge, derived from clinical traits, estimated biological ages, and the discrepancies from chronological age were defined as age accelerations (PhenoAgeAccel). Sleep behaviors were assessed with a standardized questionnaire. propensity score matching matched control participants to age-accelerated participants, and a conditional multivariable logistic regression model estimated odds ratio (OR) and 95% confidence intervals (95% CI). Causal relationships between sleep traits and PhenoAgeAccel were explored using linear and nonlinear MR methods. Results A U-shaped association was found between sleep duration and PhenoAgeAccel risk. Short sleepers had a 7% higher risk (OR = 1.07; 95% CI: 1.03 to 1.11), while long sleepers had an 18% higher risk (OR = 1.18; 95% CI: 1.15 to 1.22), compared to normal sleepers (6–8 hours/day). Evening chronotype was linked to higher PhenoAgeAccel risk than morning chronotype (OR = 1.14; 95% CI: 1.10 to 1.18), while no significant associations were found for insomnia or snoring. Morning chronotype had a protective effect on PhenoAgeAccel risk (OR = 0.87, 95% CI: 0.79 to 0.95) per linear MR analysis. Genetically predicted sleep duration showed a U-shaped relationship with PhenoAgeAccel, suggesting a nonlinear association (pnonlinear < 0.001). Conclusions The study suggests that improving sleep can slow biological aging, highlighting the importance of optimizing sleep as an intervention to mitigate aging’s adverse effects.

Funder

National Natural Science of China

Distinguished Young Scholars of Jiangsu Province

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Neurology (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3