Performance of a multisensor smart ring to evaluate sleep: in-lab and home-based evaluation of generalized and personalized algorithms

Author:

Grandner Michael A1ORCID,Bromberg Zohar2,Hadley Aaron2ORCID,Morrell Zoe2ORCID,Graf Arnulf2,Hutchison Stephen1,Freckleton Dustin2

Affiliation:

1. Department of Psychiatry, University of Arizona College of Medicine , Tucson, AZ , USA

2. Happy Health, Inc ., Austin, TX , USA

Abstract

Abstract Study Objectives Wearable sleep technology has rapidly expanded across the consumer market due to advances in technology and increased interest in personalized sleep assessment to improve health and mental performance. We tested the performance of a novel device, the Happy Ring, alongside other commercial wearables (Actiwatch 2, Fitbit Charge 4, Whoop 3.0, Oura Ring V2), against in-lab polysomnography (PSG) and at-home electroencephalography (EEG)-derived sleep monitoring device, the Dreem 2 Headband. Methods Thirty-six healthy adults with no diagnosed sleep disorders and no recent use of medications or substances known to affect sleep patterns were assessed across 77 nights. Subjects participated in a single night of in-lab PSG and two nights of at-home data collection. The Happy Ring includes sensors for skin conductance, movement, heart rate, and skin temperature. The Happy Ring utilized two machine-learning derived scoring algorithms: a “generalized” algorithm that applied broadly to all users, and a “personalized” algorithm that adapted to individual subjects’ data. Epoch-by-epoch analyses compared the wearable devices to in-lab PSG and to at-home EEG Headband. Results Compared to in-lab PSG, the “generalized” and “personalized” algorithms demonstrated good sensitivity (94% and 93%, respectively) and specificity (70% and 83%, respectively). The Happy Personalized model demonstrated a lower bias and more narrow limits of agreement across Bland-Altman measures. Conclusion The Happy Ring performed well at home and in the lab, especially regarding sleep/wake detection. The personalized algorithm demonstrated improved detection accuracy over the generalized approach and other devices, suggesting that adaptable, dynamic algorithms can enhance sleep detection accuracy.

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Neurology (clinical)

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3