Genioglossus motor unit activity in supine and upright postures in obstructive sleep apnea

Author:

Luu Billy L1,Saboisky Julian P12,McBain Rachel A12,Trinder John A3,White David P4,Taylor Janet L125,Gandevia Simon C12,Butler Jane E12

Affiliation:

1. Neuroscience Research Australia, Randwick, NSW, Australia

2. University of New South Wales, Sydney, NSW, Australia

3. University of Melbourne, Parkville, VIC, Australia

4. Sleep Disorders Research Program, Division of Sleep Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA

5. Edith Cowan University, Joondalup, WA, Australia

Abstract

Abstract This study investigated whether a change in posture affected the activity of the upper-airway dilator muscle genioglossus in participants with and without obstructive sleep apnea (OSA). During wakefulness, a monopolar needle electrode was used to record single motor unit activity in genioglossus in supine and upright positions to alter the gravitational load that causes narrowing of the upper airway. Activity from 472 motor units was recorded during quiet breathing in 17 males, nine of whom had OSA. The mean number of motor units for each participant was 11.8 (SD 3.4) in the upright and 16.0 (SD 4.2) in the supine posture. For respiratory-modulated motor units, there were no significant differences in discharge frequencies between healthy controls and participants with OSA. Within each breath, genioglossus activity increased through the recruitment of phasic motor units and an increase in firing rate, with an overall increase of ~6 Hz (50%) across both postures and participant groups. However, the supine posture did not lead to compensatory increases in the peak discharge frequencies of inspiratory and expiratory motor units, despite the increase in gravitational load on the upper airway. Posture also had no significant effect on the discharge frequency of motor units that showed no respiratory modulation during quiet breathing. We postulate that, in wakefulness, any increase in genioglossus activity to compensate for the gravitational effects on the upper airway is achieved primarily through the recruitment of additional motor units in both healthy controls and participants with OSA.

Funder

National Health and Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Clinical Neurology

Reference39 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3