Efficient DNA double-strand break formation at single or multiple defined sites in theSaccharomyces cerevisiaegenome

Author:

Gnügge Robert1ORCID,Symington Lorraine S12ORCID

Affiliation:

1. Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA

2. Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA

Abstract

AbstractDNA double-strand breaks (DSBs) are common genome lesions that threaten genome stability and cell survival. Cells use sophisticated repair machineries to detect and heal DSBs. To study DSB repair pathways and associated factors, inducible site-specific endonucleases have proven to be fundamental tools. In Saccharomyces cerevisiae, galactose-inducible rare-cutting endonucleases are commonly used to create a single DSB at a unique cleavage site. Galactose induction requires cell cultivation in suboptimal growth media, which is tedious especially when working with slow growing DSB repair mutants. Moreover, endonucleases that simultaneously create DSBs in multiple defined and unique loci of the yeast genome are not available, hindering studies of DSB repair in different genomic regions and chromatin contexts. Here, we present new tools to overcome these limitations. We employ a heterologous media-independent induction system to express the yeast HO endonuclease or bacterial restriction enzymes for single or multiple DSB formation, respectively. The systems facilitate tightly controlled and efficient DSB formation at defined genomic sites and will be valuable tools to study DSB repair at a local and genome-wide scale.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference63 articles.

1. DNA damage, aging, and cancer;Hoeijmakers;New Engl. J. Med.,2009

2. Sources of DNA double-strand breaks and models of recombinational DNA repair;Mehta;CSH Perspect. Biol.,2014

3. Mechanism and regulation of meiotic recombination initiation;Lam;CSH Perspect. Biol.,2014

4. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation;Chi;Immunology,2020

5. Genome-editing technologies for gene and cell therapy;Maeder;Mol. Ther.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3