Sequence specificity, energetics and mechanism of mismatch recognition by DNA damage sensing protein Rad4/XPC

Author:

Panigrahi Abhinandan1,Vemuri Hemanth1,Aggarwal Madhur1,Pitta Kartheek1,Krishnan Marimuthu1

Affiliation:

1. Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India

Abstract

AbstractThe ultraviolet (UV) radiation-induced DNA lesions play a causal role in many prevalent genetic skin-related diseases and cancers. The damage sensing protein Rad4/XPC specifically recognizes and repairs these lesions with high fidelity and safeguards genome integrity. Despite considerable progress, the mechanistic details of the mode of action of Rad4/XPC in damage recognition remain obscure. The present study investigates the mechanism, energetics, dynamics, and the molecular basis for the sequence specificity of mismatch recognition by Rad4/XPC. We dissect the following three key molecular events that occur as Rad4/XPC tries to recognize and bind to DNA lesions/mismatches: (a) the association of Rad4/XPC with the damaged/mismatched DNA, (b) the insertion of a lesion-sensing β-hairpin of Rad4/XPC into the damage/mismatch site and (c) the flipping of a pair of nucleotide bases at the damage/mismatch site. Using suitable reaction coordinates, the free energy surfaces for these events are determined using molecular dynamics (MD) and umbrella sampling simulations on three mismatched (CCC/CCC, TTT/TTT and TAT/TAT mismatches) Rad4-DNA complexes. The study identifies the key determinants of the sequence-dependent specificity of Rad4 for the mismatches and explores the ramifications of specificity in the aforementioned events. The results unravel the molecular basis for the high specificity of Rad4 towards CCC/CCC mismatch and lower specificity for the TAT/TAT mismatch. A strong correlation between the depth of β-hairpin insertion into the DNA duplex and the degree of coupling between the hairpin insertion and the flipping of bases is also observed. The interplay of the conformational flexibility of mismatched bases, the depth of β-hairpin insertion, Rad4-DNA association energetics and the Rad4 specificity explored here complement recent experimental FRET studies on Rad4-DNA complexes.

Funder

CSIR

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3