Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue

Author:

Gyllborg Daniel1ORCID,Langseth Christoffer Mattsson1,Qian Xiaoyan1,Choi Eunkyoung1,Salas Sergio Marco1,Hilscher Markus M1,Lein Ed S2,Nilsson Mats1ORCID

Affiliation:

1. Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65 Solna, Sweden

2. Allen Institute for Brain Science, Seattle, WA 98109, USA

Abstract

Abstract Visualization of the transcriptome in situ has proven to be a valuable tool in exploring single-cell RNA-sequencing data, providing an additional spatial dimension to investigate multiplexed gene expression, cell types, disease architecture or even data driven discoveries. In situ sequencing (ISS) method based on padlock probes and rolling circle amplification has been used to spatially resolve gene transcripts in tissue sections of various origins. Here, we describe the next iteration of ISS, HybISS, hybridization-based in situ sequencing. Modifications in probe design allows for a new barcoding system via sequence-by-hybridization chemistry for improved spatial detection of RNA transcripts. Due to the amplification of probes, amplicons can be visualized with standard epifluorescence microscopes for high-throughput efficiency and the new sequencing chemistry removes limitations bound by sequence-by-ligation chemistry of ISS. HybISS design allows for increased flexibility and multiplexing, increased signal-to-noise, all without compromising throughput efficiency of imaging large fields of view. Moreover, the current protocol is demonstrated to work on human brain tissue samples, a source that has proven to be difficult to work with image-based spatial analysis techniques. Overall, HybISS technology works as a targeted amplification detection method for improved spatial transcriptomic visualization, and importantly, with an ease of implementation.

Funder

Swedish Research Council

European Union

Swedish Brain Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3