Modular protein-oligonucleotide signal exchange

Author:

Agrawal Deepak K12ORCID,Schulman Rebecca134

Affiliation:

1. Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA

2. Department of Bioengineering, University of Colorado Medicine, Aurora, CO 80045, USA

3. Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, USA

4. Department of Computer Science, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218, USA

Abstract

AbstractWhile many methods are available to measure the concentrations of proteins in solution, the development of a method to quantitatively report both increases and decreases in different protein concentrations in real-time using changes in the concentrations of other molecules, such as DNA outputs, has remained a challenge. Here, we present a biomolecular reaction process that reports the concentration of an input protein in situ as the concentration of an output DNA oligonucleotide strand. This method uses DNA oligonucleotide aptamers that bind either to a specific protein selectively or to a complementary DNA oligonucleotide reversibly using toehold-mediated DNA strand-displacement. It is possible to choose the sequence of output strand almost independent of the sensing protein. Using this strategy, we implemented four different exchange processes to report the concentrations of clinically relevant human α-thrombin and vascular endothelial growth factor using changes in concentrations of DNA oligonucleotide outputs. These exchange processes can operate in tandem such that the same or different output signals can indicate changes in concentration of distinct or identical input proteins. The simplicity of our approach suggests a pathway to build devices that can direct diverse output responses in response to changes in concentrations of specific proteins.

Funder

Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3