Stretching DNA origami: effect of nicks and Holliday junctions on the axial stiffness

Author:

Jung Wei-Hung123,Chen Enze4,Veneziano Remi56,Gaitanaros Stavros4,Chen Yun123ORCID

Affiliation:

1. Department of Mechanical Engineering, Johns Hopkins University, USA

2. Institute for NanoBioTechnology, Johns Hopkins University, USA

3. Center for Cell Dynamics, Johns Hopkins University, USA

4. Department of Civil and Systems Engineering, Johns Hopkins University, USA

5. Department of Bioengineering, George Mason University, USA

6. Institute for Advanced Biomedical Research, George Mason University, USA

Abstract

Abstract The axial stiffness of DNA origami is determined as a function of key nanostructural characteristics. Different constructs of two-helix nanobeams with specified densities of nicks and Holliday junctions are synthesized and stretched by fluid flow. Implementing single particle tracking to extract force–displacement curves enables the measurement of DNA origami stiffness values at the enthalpic elasticity regime, i.e. for forces larger than 15 pN. Comparisons between ligated and nicked helices show that the latter exhibit nearly a two-fold decrease in axial stiffness. Numerical models that treat the DNA helices as elastic rods are used to evaluate the local loss of stiffness at the locations of nicks and Holliday junctions. It is shown that the models reproduce the experimental data accurately, indicating that both of these design characteristics yield a local stiffness two orders of magnitude smaller than the corresponding value of the intact double-helix. This local degradation in turn leads to a macroscopic loss of stiffness that is evaluated numerically for multi-helix DNA bundles.

Funder

Johns Hopkins University

National Institute of Biomedical Imaging and Bioengineering

National Cancer Institute

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference57 articles.

1. Challenges and opportunities for structural DNA nanotechnology;Pinheiro;Nat. Nanotechnol.,2011

2. DNA nanotechnology: novel DNA constructions;Seeman;Annu. Rev. Biophys. Biomol. Struct.,1998

3. Structural DNA nanotechnology: state of the art and future perspective;Zhang;J. Am. Chem. Soc.,2014

4. DNA nanotechnology;Seeman;Nat. Rev. Mater.,2017

5. The enabled state of DNA nanotechnology;Linko;Curr. Opin. Biotechnol.,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3