The identity and methylation status of the first transcribed nucleotide in eukaryotic mRNA 5′ cap modulates protein expression in living cells

Author:

Sikorski Pawel J1,Warminski Marcin2,Kubacka Dorota2,Ratajczak Tomasz1ORCID,Nowis Dominika13ORCID,Kowalska Joanna2ORCID,Jemielity Jacek1ORCID

Affiliation:

1. Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland

2. Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

3. Department of Genomic Medicine, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland

Abstract

Abstract7-Methylguanosine 5′ cap on mRNA is necessary for efficient protein expression in vitro and in vivo. Recent studies revealed structural diversity of endogenous mRNA caps, which carry different 5′-terminal nucleotides and additional methylations (2′-O-methylation and m6A). Currently available 5′-capping methods do not address this diversity. We report trinucleotide 5′ cap analogs (m7GpppN(m)pG), which are utilized by RNA polymerase T7 to initiate transcription from templates carrying Φ6.5 promoter and enable production of mRNAs differing in the identity of the first transcribed nucleotide (N = A, m6A, G, C, U) and its methylation status (±2′-O-methylation). HPLC-purified mRNAs carrying these 5′ caps were used to study protein expression in three mammalian cell lines (3T3-L1, HeLa and JAWS II). The highest expression was observed for mRNAs carrying 5′-terminal A/Am and m6Am, whereas the lowest was observed for G and Gm. The mRNAs carrying 2′-O-methyl at the first transcribed nucleotide (cap 1) had significantly higher expression than unmethylated counterparts (cap 0) only in JAWS II dendritic cells. Further experiments indicated that the mRNA expression characteristic does not correlate with affinity for translation initiation factor 4E or in vitro susceptibility to decapping, but instead depends on mRNA purity and the immune state of the cells.

Funder

National Science Centre, Poland

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3