Preferential production of RNA rings by T4 RNA ligase 2 without any splint through rational design of precursor strand

Author:

Chen Hui1,Cheng Kai1,Liu Xiaoli1,An Ran12ORCID,Komiyama Makoto1,Liang Xingguo12

Affiliation:

1. College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China

2. Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China

Abstract

Abstract Rings of single-stranded RNA are promising for many practical applications, but the methods to prepare them in preparative scale have never been established. Previously, RNA circularization was achieved by T4 RNA ligase 2 (Rnl2, a dsRNA ligase) using splints, but the yield was low due to concurrent intermolecular polymerization. Here, various functional RNAs (siRNA, miRNA, ribozyme, etc.) are dominantly converted by Rnl2 to the rings without significant limitations in sizes and sequences. The key is to design a precursor RNA, which is highly activated for the efficient circularization without any splint. First, secondary structure of target RNA ring is simulated by Mfold, and then hypothetically cut at one site so that a few intramolecular base pairs are formed at the terminal. Simply by treating this RNA with Rnl2, the target ring was selectively and efficiently produced. Unexpectedly, circular RNA can be obtained in high yield (>90%), even when only 2 bp form in the 3′-OH side and no full match base pair forms in the 5′-phosphate side. Formation of polymeric by-products was further suppressed by diluting conventional Rnl2 buffer to abnormally low concentrations. Even at high-RNA concentrations (e.g. 50 μM), enormously high selectivity (>95%) was accomplished.

Funder

Co-construction of Universities in Qingdao

Shandong Provincial Natural Science Foundation

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3