Affiliation:
1. College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
2. Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
Abstract
Abstract
Rings of single-stranded RNA are promising for many practical applications, but the methods to prepare them in preparative scale have never been established. Previously, RNA circularization was achieved by T4 RNA ligase 2 (Rnl2, a dsRNA ligase) using splints, but the yield was low due to concurrent intermolecular polymerization. Here, various functional RNAs (siRNA, miRNA, ribozyme, etc.) are dominantly converted by Rnl2 to the rings without significant limitations in sizes and sequences. The key is to design a precursor RNA, which is highly activated for the efficient circularization without any splint. First, secondary structure of target RNA ring is simulated by Mfold, and then hypothetically cut at one site so that a few intramolecular base pairs are formed at the terminal. Simply by treating this RNA with Rnl2, the target ring was selectively and efficiently produced. Unexpectedly, circular RNA can be obtained in high yield (>90%), even when only 2 bp form in the 3′-OH side and no full match base pair forms in the 5′-phosphate side. Formation of polymeric by-products was further suppressed by diluting conventional Rnl2 buffer to abnormally low concentrations. Even at high-RNA concentrations (e.g. 50 μM), enormously high selectivity (>95%) was accomplished.
Funder
Co-construction of Universities in Qingdao
Shandong Provincial Natural Science Foundation
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献