Performance analysis of a novel integrated photovoltaic–thermal system by top-surface forced circulation of water

Author:

Arefin Md Arman1,Islam Mohammad Towhidul1,Zunaed Mohammad1,Mostakim Khodadad1ORCID

Affiliation:

1. Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh

Abstract

Abstract Almost 80–90% of energy is wasted as heat (provides no value) in a photovoltaic (PV) panel. An integrated photovoltaic–thermal (PVT) system can utilize this energy and produce electricity simultaneously. In this research, through energy and exergy analysis, a novel design and methodology of a PVT system are studied and validated. Unlike the common methods, here the collector is located outside the PV panel and connected with pipes. Water passes over the top of the panel and then is forced to the collector by a pump. The effects of different water-mass flow rates on the PV panel and collector, individual and overall efficiency, mass loss, exergetic efficiency are examined experimentally. Results show that the overall efficiency of the system is around five times higher than the individual PV-panel efficiency. The forced circulation of water dropped the panel temperature and increased the panel efficiency by 0.8–1% and exergy by 0.6–1%, where the overall energy efficiency was ~81%.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Reference40 articles.

1. Current energy scenario and future prospect of renewable energy in Bangladesh;Islam;Renewable & Sustainable Energy Reviews,2014

2. Power crisis & its solution through renewable energy in Bangladesh;Anam,2011

3. Enabling sustainable thinking in undergraduate engineering education;Huntzinger;International Journal of Engineering Education,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3