Effect of additives on mercury partitioning in wet-limestone flue-gas desulfurization

Author:

Masoomi Ida1,Heidel Barna2,Schmid Marc Oliver1,Scheffknecht Günter1

Affiliation:

1. Institute of Combustion and Power Plant Technology—IFK, Department Fuels and Flue Gas Cleaning, University of Stuttgart, Stuttgart, Germany

2. Faculty Building service, Energy, Environment, Hochschule Esslingen, University of Applied Science, Esslingen, Germany

Abstract

Abstract The wet-flue-gas desulfurization (FGD) process plays an important role in removing water-soluble flue-gas components such as sulphur dioxide (SO2) and oxidized mercury compounds. Under the reducing environment of the FGD, there is the possibility of re-emission of the already absorbed mercury (Hg) to the gas phase, which may be diminished by the utilization of specific additives. In this study, the effect of two different additives on Hg re-emission from the aqueous phase and Hg partitioning in gypsum and filtrate of a lab-scale wet-limestone FGD is investigated. Furthermore, the behaviour of additives in the presence of different halides is studied. The studied additives are TMT 15® as a sulphidic precipitating agent, which forms non-soluble mercury compounds, and activated lignite (AL) as a carbon-based sorbent, which adsorbs Hg compounds from the aqueous phase. TMT 15® has no significant effect on SO2 absorption; on the other hand, addition of AL improves the SO2-removal efficiency by up to 30%. Using both additives, Hg re-emission is suppressed in all the experimented cases except for AL in the absence of halides, in which Hg re-emission shows no change. Thus, the need to form nucleophilic oxidized mercury compounds in the slurry for the adsorption of oxidized mercury on AL can be concluded. Usage of both additives improves Hg retention in the slurry to different extents. It is shown that, for the additive-free slurries, the Hg-adsorption capacity of the solid fraction of the slurry is the limiting parameter. Moreover, the utilization of both additives results in a significant increase in the Hg concentration of solid fraction. The correlation between redox potential and partitioning of Hg in the slurry is presented by comparing the change in the redox potential of slurries when additives are used.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3