Stabilization of a class of switched dynamic systems: the Riccati-equation-based Approach

Author:

Bonilla M1,Aguillón, N A2,Ortiz Castillo M A2,Jacques Loiseau Jean3,Malabre M4,Azhmyakov V5,Salazar S6

Affiliation:

1. CINVESTAV-IPN, Control Automático, UMI 3175 CINVESTAV-CNRS, A.P. 14-740, México 07000

2. CINVESTAV-IPN, CONACYT México, A.P. 14-740, México 07000

3. CNRS, LS2N (Laboratoire des Sciences du Numérique de Nantes), UMR 6004, B.P. 92101, 44321 Nantes, Cedex 03, France

4. LS2N (Laboratoire des Sciences du Numérique de Nantes), UMR 6004, B.P. 92101, 44321 Nantes, Cedex 03

5. Higher School of Economics, MIEM, School of Computer Engineering, and with the Institut für Theoretische Informatik, Mathematik und Operations Research, Universität der Bundeswehr München, Zwergerstraβe 33, 85579 Neubiberg, Germany

6. CINVESTAV-IPN, Sistemas Autónomos de Navegación Aérea Y Submarina, UMI 3175 CINVESTAV-CNRS. A.P. 14-740. México 07000

Abstract

Abstract Our paper deals with the stabilization of a class of time-dependent linear autonomous complex systems with a switched structure. The initially given switched dynamic system is assumed to be controlled by a specific state feedback strategy associated with the linear quadratic regulator (LQR) type control. The proposed control design guarantees stabilization of the closed-loop system for all of the possible location transitions. In the solution procedure of the Algebraic Riccati Equation related to the LQR control strategy, only the knowledge of the algebraic structure related to the switched system are needed. We prove that the proposed optimal LQR type state feedback control design stabilizes the closed-loop switched system for every possible active location. The theoretical approach proposed in this paper is finally applied to a model of the Single Wing Quadrotor Aircraft, when changing from its Quadrotor Flight Envelope to its Airplane Flight Envelope.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3