Analytical redundancy relationship generation on a progressive horizon for fault diagnosis of a labelled Petri net

Author:

Chouchane Amira1

Affiliation:

1. COSYS-ESTAS, Université Gustave Eiffel, Villeneuve d'Ascq, Lille, France

Abstract

Abstract In this article, a diagnosis approach for partially observed labelled Petri nets is developed based on building a set of analytical redundancy relationships on a progressive horizon. A nominal model is used for fault detection based on a set of relationships linking the known data of the nominal behaviour. A fault model is used for fault isolation by establishing a set of relationships for each fault transition connecting the known data of the fault behaviour. The above-mentioned analytical redundancy relationships are established offline by eliminating unknown variables from the considered model. The proposed online procedure for fault diagnosis is polynomial with respect to the number of unobservable events.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Control and Optimization,Control and Systems Engineering

Reference27 articles.

1. B-W analysis: a backward reachability analysis for diagnostic problem solving suitable to parallel implementation;Anglano,1994

2. Overview of fault diagnosis methods based on Petri net models;Basile,2014

3. State estimation and fault diagnosis of time labeled Petri net systems with unobservable transitions;Basile;IEEE Trans. Automat. Control,2014

4. An efficient approach for online diagnosis of discrete event systems;Basile;IEEE Trans. Automat. Control,2009

5. Algebraic Coding Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3