Affiliation:
1. School of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
Abstract
Abstract
The Kronecker canonical form (KCF) of matrix pencils plays an important role in many fields such as systems control and differential–algebraic equations. In this article, we compute a finite and infinite Jordan chain and also a singular chain of vectors corresponding to a full row rank matrix pencil using an extended algorithm, first introduced by Jones (1999, Ph.D. Thesis, Department of Mathematics, Loughborough University of Technology, Loughborough, UK). The proposed method exploits these vectors forming the chains corresponding to the finite and infinite eigenvalues and to the right minimal indices of the pencil. This leads to the computation of two transformation matrices for obtaining under strict equivalence the KCF of the pencil. An application to the study of homogeneous linear rectangular descriptor systems is considered and closed form solutions are obtained in terms of these two transformation matrices. All the results are illustrated with an example.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献