Do generalized draw-down times lead to better dividends? A Pontryagin principle-based answer

Author:

Avram Florin1,Goreac Dan23

Affiliation:

1. Laboratoire de Mathématiques Appliqueées, UMR 5142, CNRS, Universitée de Pau, Pau,64000, France

2. School of Mathematics and Statistics, Shandong University, Weihai, Weihai 264209, PR China

3. LAMA, Université Gustave Eiffel, UPEM, Université Paris Est Créteil, CNRS, F-77447 Marne-la-Valleée, France

Abstract

Abstract In the context of maximizing cumulative dividends under barrier policies, generalized Azéma–Yor (draw-down) stopping times receive increasing attention during these past years. Based on Pontryagin’s maximality principle, we illustrate the necessity of such generalizations under the framework of spectrally negative Markov processes. Roughly speaking, starting from the explicit expression of the optimal value of discounted dividends in terms of the scale functions, we write down the optimality conditions (via Pontryagin’s principle). The use of generalized draw-downs is then quantified through a structure term (linked to the existence of non bang-bang optimal controls). We thoroughly study several classes of Lévy processes (Bertoin, Lévy Processes, vol. 121. Cambridge University Press, 1998; Kyprianou, Fluctuations of Lévy Processes with Applications: Introductory Lectures. Springer Science & Business Media, 2014) constituting the usual models of insurance claims and a particular piece-wise deterministic Markov model (extending the premium rate to reserve-dependent settings). In all these models, we disprove the consistency of the aforementioned structure equation, thus denying the necessity of such generalizations. We end the paper with some heuristics on possible non-trivial cases for general Markov models.

Funder

Romanian Ministry of Research and Innovation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3