Affiliation:
1. Technische Universität Chemnitz, Automatic Control and System Dynamics Laboratory, Chemnitz, Germany
Abstract
Abstract
The extremum value theorem for function spaces plays the central role in optimal control. It is known that computation of optimal control actions and policies is often prone to numerical errors which may be related to computability issues. The current work addresses a version of the extremum value theorem for function spaces under explicit consideration of numerical uncertainties. It is shown that certain function spaces are bounded in a suitable sense, i.e., they admit finite approximations up to an arbitrary precision. The proof of this fact is constructive in the sense that it explicitly builds the approximating functions. Consequently, existence of approximate extremal functions is shown. Applicability of the theorem is investigated for finite-horizon optimal control, dynamic programming and adaptive dynamic programming. Some possible computability issues of the extremum value theorem in optimal control are shown on counterexamples.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献