On linear-quadratic optimal control of implicit difference equations

Author:

Bankmann Daniel1,Voigt Matthias1

Affiliation:

1. Sekretariat MA 4–5, Institut für Mathematik, Technische Universität Berlin, Germany

Abstract

Abstract In this work we investigate explicit and implicit difference equations and the corresponding infinite time horizon linear-quadratic optimal control problem. We derive conditions for feasibility of the optimal control problem as well as existence and uniqueness of optimal controls under certain weaker assumptions compared to the standard approaches in the literature which are using algebraic Riccati equations. To this end, we introduce and analyse a discrete-time Lur’e equation and a corresponding Kalman–Yakubovich–Popov (KYP) inequality. We show that solvability of the KYP inequality can be characterized via the spectral structure of a certain palindromic matrix pencil. The deflating subspaces of this pencil are finally used to construct solutions of the Lur’e equation. The results of this work are transferred from the continuous-time case. However, many additional technical difficulties arise in this context.

Funder

European Research Council

Einstein Stiftung Berlin

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Control and Optimization,Control and Systems Engineering

Reference41 articles.

1. Backes, A. (2006) Extremalbedingungen für optimierungs-probleme mit algebro-differentialgleichungen. Also as Dissertation, Institut für Mathematik, Humboldt-Universität zu Berlin. Berlin: Logos. ISBN 978–3-8325–1268-2.

2. On linear-quadratic control theory of implicit difference equations;Bankmann,2016

3. The linear-quadratic optimal regulator for descriptor systems: discrete-time case;Bender;Automatica,1987

4. On differential-algebraic control systems;Berger,2014

5. Berger, T. & Reis, T. (2013) Controllability of linear differential-algebraic systems—a survey. Surveys in Differential-Algebraic Equations I (A.Ilchmann & T. Reis eds.). Differential-Algebraic Equations Forum. Berlin, Heidelberg: Springer. pp. 1–61.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Penalized Least-Squares Method for LQR Problem of Singular Systems;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

2. On discrete-time dissipative port-Hamiltonian (descriptor) systems;Mathematics of Control, Signals, and Systems;2023-12-06

3. A geometric framework for discrete time port‐Hamiltonian systems;PAMM;2023-09

4. Optimal control of DAEs with unconstrained terminal costs;2021 60th IEEE Conference on Decision and Control (CDC);2021-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3