Predicting fat cover in beef cattle to make on-farm management decisions: a review of assessing fat and of modeling fat deposition

Author:

McPhee Malcolm J1ORCID

Affiliation:

1. NSW Department of Primary Industries, Livestock Industries Centre, University of New England , Armidale, New South Wales , Australia

Abstract

Abstract Demands of domestic and foreign market specifications of carcass weight and fat cover, of beef cattle, have led to the development of cattle growth models that predict fat cover to assist on-farm managers make management decisions. The objectives of this paper are 4-fold: 1) conduct a brief review of the biological basis of adipose tissue accretion, 2) briefly review live and carcass assessments of beef cattle, and carcass grading systems used to develop quantitative compositional and quality indices, 3) review fat deposition models: Davis growth model (DGM), French National Institute for Agricultural Research growth model (IGM), Cornell Value Discovery System (CVDS), and BeefSpecs drafting tool (BeefSpecsDT), and 4) appraise the process of translating science and practical skills into research/decision support tools that assist the Beef industry improve profitability. The r2 for live and carcass animal assessments, using several techniques across a range of species and traits, ranged from 0.61 to 0.99 and from 0.52 to 0.99, respectively. Model evaluations of DGM and IGM were conducted using Salers heifers (n = 24) and Angus-Hereford steers (n = 15) from an existing publication and model evaluations of CVDS and BeefSpecsDT were conducted using Angus steers (n = 33) from a research trial where steers were grain finished for 101 d in a commercial feedlot. Evaluating the observed and predicted fat mass (FM) is the focus of this review. The FM mean bias for Salers heifers were 7.5 and 1.3 kg and the root mean square error of prediction (RMSEP) were 31.2 and 27.8 kg and for Angus-Hereford steers the mean bias were −4.0 and −10.5 kg and the RMSEP were 9.14 and 21.5 kg for DGM and IGM, respectively. The FM mean bias for Angus steers were −5.61 and −2.93 kg and the RMSEP were 12.3 and 13.4 kg for CVDS and BeefSpecsDT, respectively. The decomposition for bias, slope, and deviance were 21%, 12%, and 68% and 5%, 4%, and 91% for CVDS and BeefSpecsDT, respectively. The modeling efficiencies were 0.38 and 0.27 and the models were within a 20 kg level of tolerance 91% and 88% for CVDS and BeefSpecsDT, respectively. Fat deposition models reported in this review have the potential to assist the beef industry make on-farm management decisions on live cattle before slaughter and improve profitability. Modelers need to continually assess and improve their models but with a caveat of 1) striving to minimize inputs, and 2) choosing on-farm inputs that are readily available.

Publisher

Oxford University Press (OUP)

Reference104 articles.

1. BeefTrader: optimal economical endpoint decision support system for feedlots and meat packers;Albertini;J. Anim. Sci,2017

2. Lean meat yield estimation using a prototype 3D imaging approach;Alempijevic;Meat Sci,2021

3. Cellularity of adipose tissue in meat animals;Allen;Fed. Proc,1976

4. Statistical analysis of sheep CAT scan images using a Bayesian mixture model;Alston;Aust. J. Agric. Res,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3