Spatio-temporal Dynamics in Animal Communication: A Special Issue Arising from a Unique Workshop-Symposium Model

Author:

Hoke Kim L1,Hensley Nicholai2,Kanwal Jessleen K3,Wasserman Sara4,Morehouse Nathan I5

Affiliation:

1. Department of Biology, Colorado State University, Fort Collins, CO 80523, USA

2. Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA

3. Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA

4. Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA

5. Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA

Abstract

Synopsis Investigating how animals navigate space and time is key to understanding communication. Small differences in spatial positioning or timing can mean the difference between a message received and a missed connection. However, these spatio-temporal dynamics are often overlooked or are subject to simplifying assumptions in investigations of animal signaling. This special issue addresses this significant knowledge gap by integrating work from researchers with disciplinary backgrounds in neuroscience, cognitive ecology, sensory ecology, computer science, evolutionary biology, animal behavior, and philosophy. This introduction to the special issue outlines the novel questions and approaches that will advance our understanding of spatio-temporal dynamics of animal communication. We highlight papers that consider the evolution of spatio-temporal dynamics of behavior across sensory modalities and social contexts. We summarize contributions that address the neural and physiological mechanisms in senders and receivers that shape communication. We then turn to papers that introduce cutting edge technologies that will revolutionize our ability to track spatio-temporal dynamics of individuals during social encounters. The interdisciplinary collaborations that gave rise to these papers emerged in part from a novel workshop-symposium model, which we briefly summarize for those interested in fostering syntheses across disciplines.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3