Impact of Different Wavelengths of Artificial Light at Night on Phototaxis in Aquatic Insects

Author:

Kühne Judith L12,van Grunsven Roy H A13ORCID,Jechow Andreas1ORCID,Hölker Franz12ORCID

Affiliation:

1. Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany

2. Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany

3. Dutch Butterfly Conservation, Postbus 506, 6700 AM Wageningen, The Netherlands

Abstract

Synopsis The use of artificial light at night (ALAN) is increasing exponentially worldwide and there is growing evidence that ALAN contributes to the decline of insect populations. One of the most conspicuous ecological effects is the strong attraction of ALAN to flying insects. In several studies, light sources with strong short-wavelength emissions have been shown to attract the highest numbers of flying insects. Furthermore, flying stages of aquatic insects are reported to be more vulnerable to ALAN than flying stages of terrestrial insects. This is concerning because freshwater habitats are likely affected by ALAN that originates from human activity centers, which are typically close to sources of freshwater. However, the effects of ALAN on aquatic insects, which spend their larval phase (amphibiotic insects) or their whole life cycle (fully aquatic insects) in freshwaters, are entirely understudied. Here, we investigated the phototaxis of aquatic insects to ALAN at different wavelengths and intensities. We used floating light traps and compared four, near-monochromatic, lights (blue, green, red, and yellow) at two different photopic light intensities in a ditch system, which was not exposed to ALAN previously. Similar to flying stages of (aquatic and terrestrial) insects, we found a strong positive phototaxis of aquatic life stages. However, in contrast to the flying stages, there is no clear preference for short-wavelength light. Overall, responsivity to wavelengths in the center of the visible range (green, yellow; 500–600 nm) was significant for all orders of aquatic insects studied, and the nymphs of Ephemeroptera did not respond to blue light at all. This is likely an adaption to how light is attenuated in freshwater systems, where not only the water itself but also a variety of optical constituents act as a color filter, often like in our case filtering out short-wavelength light. Therefore, insects living in freshwater bodies often live in longer wavelength-dominated environments and might therefore be especially sensitive to green/yellow light. In conclusion, the different spectral sensitivities of both aquatic and flying insects should be taken into account when planning lighting near freshwater.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3