A Minimal Framework for Describing Living Systems: A Multi-Dimensional View of Life Across Scales

Author:

Caetano-Anollés Kelsey1ORCID,Ewers Brent2,Iyer Shilpa3,Lucas Jeffrey R4,Pavlic Theodore P5ORCID,Seale Andre P6,Zeng Yu7ORCID

Affiliation:

1. Callout Biotech, Albuquerque, NM 87111, USA

2. Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA

3. Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR 72701, USA

4. Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA

5. School of Computing, Informatics, and Decision Systems Engineering / School of Sustainability / School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA

6. Department of Human Nutrition, Food and Animal Sciences, University of Hawai‘i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA

7. Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA

Abstract

Abstract The almost limitless complexity of biology has led to two general approaches to understanding biological phenomena. One approach is dominated by reductionism in which high-level phenomena of whole systems are viewed as emerging from relatively simple and generally understood interactions at a substantially lower level. Although this approach is theoretically general, it can become intractable in practice when attempting to simultaneously explain a wide range of systems. A second approach is for specialists to investigate biological phenomena within one of many different hierarchical levels of description that are separated to decouple from concerns at other levels. Although this approach reduces the explanatory burden on specialists that operate within each level, it also reduces integration from insights gained at other levels. Thus, as beneficial as these approaches have been, they limit the scope and integration of knowledge across scales of biological organization to the detriment of a truly synoptic view of life. The challenge is to find a theoretical and experimental framework that facilitates a broader understanding of the hierarchy of life—providing permeability for the exchange of ideas among disciplinary specialists without discounting the peculiarities that have come to define those disciplines. For this purpose, coarse-grained, scale-invariant properties, and resources need to be identified that describe the characteristic features of a living system at all spatiotemporal scales. The approach will be aided by a common vernacular that underscores the realities of biological connections across a wide range of scales. Therefore, in this vision paper, we propose a conceptual approach based on four identified resources—energy, conductance, storage, and information (ECSI)—to reintegrate biological studies with the aim of unifying life sciences under resource limitations. We argue that no functional description of a living system is complete without accounting for at least all four of these resources. Thus, making these resources explicit will help to identify commonalities to aid in transdisciplinary discourse as well as opportunities for integrating among the differently scoped areas of specialized inquiry. The proposed conceptual framework for living systems should be valid across all scales and may uncover potential limitations of existing hypotheses and help researchers develop new hypotheses addressing fundamental processes of life without having to resort to reductionism.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3