Bringing Disciplines and People Together to Characterize the Plastic and Genetic Responses of Molluscs to Environmental Change

Author:

Matoo Omera B1,Neiman Maurine23

Affiliation:

1. School of Biological Sciences, University of Nebraska-Lincoln, Lincoln 68588, NE, USA

2. Department of Biology, University of Iowa, Iowa City 52242, IA, USA

3. Department of Gender, Women's, and Sexuality Studies, University of Iowa, Iowa City 52242, IA, USA

Abstract

Abstract Molluscs are remarkably diverse and are found across nearly all ecosystems, meaning that members of this ancient animal phylum provide a powerful means to study genomic-phenotype connections in a climate change framework. Recent advances in genomic sequencing technologies and genome assembly approaches finally allow the relatively cheap and tractable assembly of high-quality mollusc genome resources. After a brief review of these issues and advances, we use a case-study approach to provide some concrete examples of phenotypic plasticity and genomic adaptation in molluscs in response to environmental factors expected to be influenced by climate change. Our goal is to use molluscs as a “common currency” to demonstrate how organismal and evolutionary biologists can use natural systems to make phenotype-genotype connections in the context of changing environments. In parallel, we emphasize the critical need to collaborate and integrate findings across taxa and disciplines in order to use new data and information to advance our understanding of mollusc biology in the context of global environmental change. We end with a brief synthetic summary of the papers inspired by the 2021 SICB Symposium “Genomic Perspectives in Comparative Physiology of Molluscs: Integration across Disciplines”.

Funder

Company of Biologists

National Science Foundation

American Genetic Association

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3