The Physiological Conundrum That is the Domestic Dog

Author:

Jimenez Ana Gabriela1ORCID

Affiliation:

1. Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA

Abstract

Synopsis Across Mammalia, body size and lifespan are positively correlated. However, in domestic dogs, the opposite is true: small dogs have longer lives compared with large dogs. Here, I present literature-based data on life-history traits that may affect dog lifespan, including adaptations at the whole-organism, and organ-level. Then, I compare those same traits to wild canids. Because oxidative stress is a byproduct of aerobic metabolism, I also present data on oxidative stress in dogs that suggests that small breed dogs accumulate significantly more circulating lipid peroxidation damage compared with large breed dogs, in opposition to lifespan predictions. Further, wild canids have increased antioxidant concentrations compared with domestic dogs, which may aid in explaining why wild canids have longer lifespans than similar-sized domestic dogs. At the cellular level, I describe mechanisms that differ across size classes of dogs, including increases in aerobic metabolism with age, and increases in glycolytic metabolic rates in large breed dogs across their lifespan. To address potential interventions to extend lifespan in domestic dogs, I describe experimental alterations to cellular architecture to test the “membrane pacemaker” hypotheses of metabolism and aging. This hypothesis suggests that increased lipid unsaturation and polyunsaturated fatty acids in cell membranes can increase cellular metabolic rates and oxidative damage, leading to potential decreased longevity. I also discuss cellular metabolic changes of primary fibroblast cells isolated from domestic dogs as they are treated with commercially available drugs that are linked to lifespan and health span expansion.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3